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The phonon dynamics of a harmonic oscillator coupled to a steady reservoir is 
studied. In the Markovian limit, the equilibrium is reached through a 
progressive toss of memory process which involves the moments of the initial 
distribution. The relationship to the non-Markovian equations of motion and 
its resolvent poles is settled. As a particular model of the coupling mechanism is 
adopted, the possibility of non-Gibbsian equilibrium distribution arises, which 
is analyzed focusing upon the dependence of various parameters of the system 
on an effective equilibrium temperature. 

KEY WORDS: Markovian limit; progressive loss of memory; non- 
Markovian analysis; non-Gibbsian equilibrium distribution. 

1. I N T R O D U C T I O N  

The features of quan ta l  Brownian  m o t i o n  can be inves t iga ted  th rough  the 
quan t i za t ion  of a classical  system tha t  general ly  leads to a q u a n t u m  
Langev in- type  equat ion.  (1 5) The comprehens ion  of  the p h e n o m e n o n  m a y  
be enhanced  if we cons ider  two in te rac t ing  subsys tems nei ther  of which nor  
the whole  system necessar i ly  possesses a priori  a classical  analog.  Regard ing  
this mat te r ,  a recent  a p p r o a c h  to the descr ip t ion  of d a m p e d  collective 
m o t i o n  of finite quan ta l  systems such as nuclei  has been p r o p o s e d  (6> and  
var ious  app l ica t ions  have been given. (7 16) The mode l  involved in these 
works  consists  of a ha rmon ic  osc i l la tor  whose p h o n o n s  in terac t  with 
fermions which const i tu te  a hea t  reservoir ;  we have recently invest igated a 
more  accura te  modif ied  vers ion of the or iginal  mode l  tha t  takes  into 
account  n o n - M a r k o v i a n  effects in cer ta in  conf igura t ions  at  zero 
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674 Cataido and Hernandez 

temperature. ~17'18) In the present work we further develop the approach for 
the general case of nonvanishing temperature. 

The quantal Brownian motion of a harmonic oscillator also con- 
stitutes a problem of interest in the context of quantum optics. (19 21~ In this 
framework, the damped oscillator has been generally treated by means of 
Glauber's P quasiprobability distribution, (22) which, in such a case, moves 
according to an analytically solvable Fokker-Planck equation. (23-25) 
However, the solution through Glauber's P function involves certain 
disadvantages, since it is unsuitable for describing full quantum con- 
figurations, such as: 

1. The relaxation of a pure n-phonon state, which is the most 
interesting initial condition when one focuses upon damped collective 
motion of finite quantal systems such as nuclei. (6 9~ In fact, it is well 
known (22) that a pure n-phonon state cannot be represented by a well- 
behaved P function (the P representation corresponding to a density 
matrix In) (nl contains derivatives of delta functions up to order 2n).~26~ 

2. The evolution toward a configuration with vanishing equilibrium 
temperature. In fact, in such a situation it can be shown that both the 
Fokker-Planck equation and its solutions collapse. (23/ This collapsing 
behavior arises from the fact that all the eigenvectors of the master 
equation have, at zero temperature, an infinite number of vanishing 
components (18) and therefore they do not possess a well-behaved associated 
P function. (22) 

The above drawbacks of the P solution led us to explore the direct 
solutions of the master equation. 

This paper is organized as follows: first we solve the master equations 
for the phonon populations in the Markovian limit (Sections 2 and 3). 
Since the classical techniques of solution of master equations such as the 
Kirchhoff (27) or continued-fraction (25) methods are not useful in the present 
case, we use the characteristic function associated with the probability 
distribution governed by the master equation. This procedure allows us to 
find the complete dynamical solution, which is analyzed in Section 3, giving 
rise to an interesting process with progressive loss of memory. In Section 4 
we show that the non-Markovian equations can be easily solved by means 
of the Markovian solutions. The phonon dynamics in the non-Markovian 
regime is examined in Section 5 for a particular model of the system- 
to-reservoir coupling and a non-Gibbsian behavior is observed, (1 3,17.18) 
which we study, focusing upon the dependence of various parameters of 
the model on an effective equilibrium temperature. The main results are 
summarized in Section 6. 
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2. THE SPECTRAL P R O B L E M  OF THE M A R K O V I A N  M A S T E R  
E Q U A T I O N  

In this section, we illustrate the use of characteristic functions to 
extract the eigenvalues and eigenvectors of a statistical generator of 
evolution. The starting point is the Markovian master equation for the 
phonon populations p. that corresponds to an oscillator immersed in a 
heat bath. (23-25~ This equation reads, for n >~ 0, 

tSn=nW_p, l - [ n W + + ( n + l )  W _ ] p n + ( n + l ) W + p n + l  (2.1) 

with the microscopic transition rates W+, whose structure depends on the 
particular model for the heat bath and the interaction. 

Now let us consider the characteristic function for the probability 
distribution pn( t ), 

O(x, t)= ~ p,(t) x ~ (2.2) 
n~>O 

From Eq. (2.1), we can easily obtain an equation for this function, namely, 

~?~b(x ' t )=W+(x-1)[  fltp(x't)+(flx-l)~b(x't--~) ~x (2.3) 

where we have defined the parameter/3 

B= W /W+ (2.4) 

We investigate the stationary solutions of Eq. (2.3), namely 

~p(~/(x, t)=Z(e)(x) e k(w- w+l, (2.5) 

where k is a number to be determined. Separation of variables in (2.3) 
leads us to the eigencharacteristics, 

p(o k' ( 1 - x ~ k  (2.6) 
Z(k)(x) = 1 -----fix \1  -- fix// 

We can now find the solution of the spectral problem of the master 
equation (2.1) by means of Eqs. (2.5) and (2.6). In fact, the stationary 
ansatz (2.5) defines the set of eigenvalues 

2 ~ = k ( W _  - W+) (2.7) 

the corresponding eigenvectors being [cf. Eq. (2.2)] 

1 d"  x :  0 p(k) n! dx" Z(k~(x) (2.8) 
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Using expression (2.6), a straightforward calculation leads us to 

n-T i f l " - ; ( - 1 )  j ( k - j + n ) ( k - j + n - 1 ) . . . ( k - j + l )  (2.9) 
j = 0  

for the nth component of the eigendistribution corresponding to the eigen- 
value 2k. 

Similarly, the moment eigenvectors can be calculated from 

(n'-"P)(k)-~Cxd) pZ(k)(X) x=l (2.10) 

Actually, these eigenvectors are the solutions of the spectral problem 
associated with the following equation of motion for the moments, which is 
derived from Eq. (2.1): 

, _ a . _  

n o = 0 (2.1 la) 
' . . . 4 . - -  - -  

n ~ = W  n ~  - W + ) n  ~ (2.11b) 

+ p ( W _  - W + ) n  p, p>>.2 (2.11c) 

From Eqs. (2.11) an easy algebraic calculation leads us to a spectrum of 
the analytical form (2.7). In addition, it becomes evident that the number k 
must be nonnegative integer (in Section 5 we discuss the conditions under 
which one has W < W+, i.e., 2k nonpositive). This spectrum was reported 
in ref. 23, from which one can verify after some calculations that the 
inclusion of nondiagonal elements of the density matrix to the dynamics 
adds all positive half-integers to the spectrum of eigenfrequencies. However, 
these frequencies do not appear in the dynamics when one focuses upon a 
diagonal initial density, such as a pure n-phonon state. 

The calculation of the eigenmoments is lengthy and tedious; we do not 
consider the analytical form of the results of any special interest to be 
shown here, except for the property 

(~-7)(k) = 0 if p < k (2.12) 

In particular, the "mass" n ~  p of a distribution p gives for the 
eigenvectors 

(~"~) (k) = ;((k)( 1 ) (2.13) 
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Inspection of Eq. (2.6) demonstrates that all eigenvectors are traceless/27) 
except for the equilibrium distribution corresponding to k = 0 ,  which 
possesses the canonical structure with a "Boltzmann factor" equal to fl in 
(2.4). ~z3'25) We will refer in Section 5 to the conditions under which one gets 
a Gibbsian distribution fl=exp(-hf2/T), with T the temperature of the 
heat bath, as well as the meaning of non-Gibbsian solutions, which has 
also been discussed in ref. 17. 

3. DISTRIBUTION A N D  PHONON D Y N A M I C S  

In the preceding section we calculated the eigenvalues and the eigen- 
vectors of the matrix M associated with the master equation (2.1). Accor- 
dingly, the time evolution of the density matrix can then be expressed as 

pn(t)= ~ ~k~ "J ~k,,~Ik)~,~ (3.1) 
k>~O 

with amplitudes Ak whose values can be obtained from the initial 
occupations pn(0) and the eigenvectors p+<k) of the adjoint master 
equation <27) as 

Ak = ~ pm+<k~pm(O) (3.2) 
m~>O 

The calculation of these adjoint eigenvectors follows the same steps as in 
the preceding section, starting from the equation of motion of an adjoint 
characteristic function ~ + (x, t). One finally obtains the complete solution 
of the spectral problem as 

in,<.,., JZf.)(k + n--j )  
p+(k)j=(1--fl) 1/2 • (--)J j (3.3) 

j : o  (/-+J\/}\ 

for k = 0, 1, 2 ..... One can verify that taking fl = 0, these results coincide 
with those explicitly derived in ref. 18. 

Using Eq. (3.3), we get 

A~ = (1 __]~)1/2 2 Pm(O) Pk(m, fl) (3.4) 
rn~>0 

where Pk(m, fl) is a kth-degree polynomial in m parametrized by ft. 
Expression (3.4) is then an important relationship indicating that the 
amplitudes Ak depend on the initial phonon configuration thro_ ugh the first 
k + 1 moments of the initial distribution, i.e., from n~ to nk(0). Notice, 

822/53/3-4-9 
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however, that the amplitude Ao corresponding to zero decay rate is 
independent of the initial condition, since 

A0p(~ ~ (1 - f l ) /~n= (1 _/~)1/2 p~O) (3.5) 

i.e., Ao= (1-/~)1/2. The attractor of the dynamical system (2.1) is then the 
canonical distribution that is reached, for very long times, when the system 
has forgotten every detail of its initial configuration. Along the same line of 
reasoning, we may interpret the long-term time evolution where p,( t )  in 
(3.1) can be approximated by 

p,( t )  ,.~ p(O) + A1 [fi(0)] e;'~'p~ 1) (3.6) 

as a stage where only memory of the phonon number is kept. Similarly, for 
medium-term time evolution, where we may express, for some finite s, 

p,( t )  = p(0)+ A~[~(0)] e~tp (1) + A2[~(0), n2(0)] e~2tp(, 2) 

+ ... + A~[fi(0),..., nS(0)] e~Jp(~ s) (3.7) 

the system only "remembers" the first s initial moments. 
We can summarize the above observations and offer a full description 

of the loss-of-memory process that accompanies the time evolution; indeed, 
this loss of memory takes place as the system progressively forgets the 
information contained in the highest moments of the initial distribution. 
Equilibrium is reached when the oscillation eventually forgets its initial 
mean phonon number. 

We can also study the phonon dynamics by means of the motion of 
the moments. In particular, the first two moments read 

n(t)= l fl~fl + In(O)-- l fl~fl] e21t (3.8a) 

n--5(t)- f l( f l+ l)  3 f l + ~ ! I ~ ( 0 ) - l ~ f l  ] e ~ '  
(1 _/~)2 ~ - -  

+[~-~(0) 3/~+lt~(0)§ 2_____~ ] (3.8b) 1 - - ~  (1 )2 e;'zt 

We notice that while the mean phonon number approaches its equilibrium 
value corresponding to the canonical distribution with a damping rate 
]2t] = W + -  W , the dispersion n 2 ( t ) - [ ~ ( t ) ]  2 admits as well a con- 
tribution from the frequency 1 2 2 ] = 2 ( W + - W  ). We also observe in 
Eqs. (3.8) that the coefficients that weight each decaying factor e ~kt with 
k = 1 or 2 only depend upon the k + 1 lowest initial moments, a fact that is 
consistent with our previous analysis of the amplitudes Ak. 
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The features of the phonon dynamics can then be generalized th___rough 
the following statement: the time evolution of the pth moment nP(t) is 
exclusively built up of the p lowest nonvanishing frequencies, while each 
weighting coefficient of a decaying factor with frequency Is appearing in 
either the probability or the moment expansion only depends on the first 
k + 1 initial moments. 

4. T H E  N O N - M A R K O V I A N  M A S T E R  E Q U A T I O N  

The non-Markovian master equation, whose Markovian limit is given 
in Eq. (2.1), exhibits the general form ~18'2~ 

;o /~(t) = dv {W+(z)[(n+ 1)p,,+l(t-r)-np,(t-r)] 

+W (z)[np,_l(t-z)-(n+l)p,(t--r)]} (4.1) 

In order to solve this integrodifferential system, it is convenient to perform 
a Laplace transformation, which leads to an algebraic system of the form 

[ 2 1 -  M(2)] Pc().) = i}e(t = 0) (4,2) 

In Eq. (4.2), 15n(2 ) is the Laplace transform of the density vector Do(t) with 
components p,(t); I is the identity in Fock 
generator M(2) is the matrix 

- W_ W+ 

W~ 

M(;.) = 0 

L 

representation and the 

0 0 

- W +  - 2 W _  2W+ 0 0 

2 W  - 2 W + - 3 W _  3W+ 0 

n W  -nW+ - ( n +  1) W_ 
\ \ 

) 

( n + l )  W+ 

(4.3) 
with the microscopic transition rate-like functions 

;0 o W+ = I~+(2)= e ;~TW+(r)&; Re2~>0 (4.4) 

Formally, the time evolution of the density vector r ) can be written 
from Eq. (4.2) as 2 

fie(t) = ~, Res[R(2), 2~] e~kt~e(0) (4.5) 
2k 

2 In Eq. (4.5) it is assumed that the singularity spectrum of the resolvent consists of single 
poles (cf. ref. 17). 
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where 2k is the kth pole of the resolvent R(2) = [-21- M(2)]  - 1. Now, since 
we have completely solved the spectral problem of the matrix M and its 
adjoint in the preceding sections, we can set up an explicit form for the 
resolvent, namely 

R(2 )=  ~ ~ ~k)()o)~+(k!(2) (4.6) 
~ o  z + k [ ~ + ( , ~ ) -  ~ _  (,~)] 

where ff(k)(2) and ~+~k)(2) are the eigenvectors, whose components can be 
obtained from Eq. (3.3) after the formal replacement of the parameter fl by 
the function 

fl(2) = if'_ (2)/1~+ (2) (4.7) 

Assuming analicity for fl(2) (see Section 5) and hence the same for the 
eigenvectors ~k)(2) and ~+~k)(2), then Eqs. (4.5) and (4.6) give us the 
density vector as 

E q ~ ( t )  = k>~o ~ [exp(2k, t)] Res 2 + k [ W + ( 2 ) -  ffz_(2)] '  
i 

• [r + ~k)(2kl ) �9 ~a(t  = 0)3 ~(k)(2k i) (4.8) 

In this expression, 2ki denotes the ith root of the secular equation [cf. 
Eq. (2.7)] 

2 + k[  Iq/+ (2) - W_(2)]  = 0 (4.9) 

while the dot in the second square bracket indicates the standard scalar 
product. 

Equation (4.8) then represents the solution of the non-Markovian 
system (4.1) with given initial conditions ~o(t = 0). 

5. P H O N O N  D Y N A M I C S  IN T H E  N O N - M A R K O V I A N  R E G I M E  

An investigation of the non-Markovian dynamics contained in 
Eq. (4.8) requires the study of the functions w(~.) =/~'+ 0 - ) -  1~ (),) [Eq. (4.9)1 
and fl(2) [Eq. (4.7)]. For this sake, we will adopt a definite model ~6-18) 
that considers a particle-phonon interaction coupling the oscillator to a 
fermionic reservoir equilibrated at a temperature T. Furthermore, we 
assume the coupling to be inelastic with a finite duration rco~ in order to 
account for unobserved degrees of freedom which might be interacting as 
well with the vibrating mode. The consequences of such an assumption for 
the spectral problem have been discussed at length in refs. 17 and 18. 
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In such a model and under the Born approximation, (28) the non- 
Markovian transition kernels in Eq. (4.1) adopt the form 

W+(r) = (2gZ/h 2) ~ I~.~.12 e -~  c o s ( ~  - n )  ~ ~p~(1 -p~)~ 
- ~ ~p~(1  - p ~ ) 3  

(5.1) 

which give the microscopic transition rate-like functions through Eq. (4.4): 

3)+). ~'p,(1 - p~)] (5.2) I,V_+(2)= (2g2/h2)~ ]2~] 2 (7 +2)  2+ (~--(D~#) 2 [p:,(l p~,)J 
cz,u 

The Markovian limit then arises from (5.2) upon taking )~ = 0. As usual in 
this type of model, the transition probabilities are expressed in terms of the 
equilibrium Fermi distribution at temperature T, with Fermi energy ev, 

PA = {1 +exp[(ea- -eF) /T]}  (5.3) 

where A is either an e or /~ single-fermion label. The transition rates also 
depend upon a spin-isospin degeneracy factor g and upon the coupling 
matrix elements 2~  related to the creation or annihilation of a phonon 
with energy h~. We learn from Eq. (5.2) that the energy parameters in 

_ ~-1 the temperature T, the these functions are the inelasticy width 7 -  col, 
phonon frequency ~2, and the interaction matrix elements (IME) 2~,  since 
the single-fermion frequencies co~ are usually related to the differences in 
the kinetic energy of the given orbitals. (6-17) It is now interesting to recall 
here (see ref. 17 for further details) how these parameters relate to each 
other in the construction of the Boltzmann factor/~ in Eq. (2.4). We know 
from previous work (6-18) that this factor coincides with exp(-h~2/T) only 
in case the particle-phonon collisions are perfectly elastic, i.e., the 
inelasticity spread 7 vanishes, since if this happens, the condition c0~ = (2 
gives rise to W+ = [exp(hf2/T)] W_. Accordingly, as we permit inelastic 
co!lisions to occur, we are making room in our description for some 
unspecified degrees of freedom whose role is to draw energy out of the 
collision vertex, where only particle and phonon labels are known. This 
fact provokes some uncertainty regarding the definition of an equilibrium 
temperature, since the extra degrees of freedom may not be equilibrated 
with the fermion bath. The modified Boltzmann factor/3 then contains the 
two possible manifestations of energy spread: the fermion temperature T 
and the inelaticity width 7. We could then introduce an effective 
equilibrium temperature Tel r as 

T~( T, 7) = -h~2/ln ~ (5.4) 
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and regard our overall system made up of the oscillator, the fermion 
reservoir, and the hindered coordinates as canonically equilibrated at a 
temperature Terr. (17~ A similar non-Gibbsian behavior has been observed by 
other authors (1-3) who studied a harmonic oscillator strongly coupled to a 
bath of harmonic oscillators. Exponentially decaying kernels similar to 
those displayed in Eq. (5.1) have been used in refs. 29 and 30 to simulate 
coupling to unspecified heat baths. In this context, 7-~ is interpreted as the 
fastest dissipative relaxation time introduced by the reservoirs. (29) 

Kievsky and Hernandez (31) show a physical realization of the above 
hidden degrees of freedom, which are specifically attributed to a complete 
set of two particle-two hole fermionic configurations in a model for the 
damping process of a giant resonance in an axially symmetric nucleus. 

Let us now consider the dependence of the equilibrium distribution on 
the IME. Such a distribution is given by 

p(O~ = [ i  - /~(0)]  [/~(0)]" (5.5) 

where /~(0) arises from Eqs. (4.7) and (5.2). Now, if we consider the zero- 
temperature limit, we have 

( 12 v 12 
fi(0)= \ ~>F72+(09~ __(2)2j/\ ~<F72+(09~ _s (5.6) 

a < F  ~ > F  

where F denotes the Fermi level of the heat bath. 
Equation (5.6) clearly exhibits those IMEs contributing to the balance 

dynamics in equilibrium at T =  0. Particular limits are the following: 

1. Hole-particle IME ( ~ < F , / ~ > F )  negligible with respect to par- 
ticle-hole IME (~ > F, # < F). In such a case,/~(0) approaches zero, causing 
the effective temperature in Eq. (5.4) to vanish as well. The equilibrium 
distribution is then the canonical one at zero temperature, 

p~O) = 6,o (5.7) 

This situation has been thoroughly investigated in refs. 17 and 18. 

2. 2~ = const, independent of e, #. Taking into account that 

(~o.~- D)2 > ( ~ -  D) 2 if ~o~ > 0 (5.8) 

we can see from Eq. (5.6) that 0 ~ fl(0) ~< 1, with 

~ { 0  

(5.9) 
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We can then establish the boundaries for the effective temperature, 

T~fr(T=7=O)=O<~T~rf(T=O,y)<<.T~rf(T=O,y~)~ (5.10) 

Expression (5.10) shows that the inelasticity spread may provoke a 
significant departure of the equilibrium distribution at zero temperature 
from the zero-temperature canonical one; indeed, the higher the effective 
temperature, the closer to a uniform pattern the equilibrium distribution 
lies. 

A more general choice for the IME, which can be easily explored, is 

)~ ={c  for z > F , # < F  (5.11) 
c' for ~<F,#>F 

with a dimensionless parameter A = c'/c giving the rate between hole- 
particle and particle-hole IME. Therefore, from Eq. (5.6) we get 

lira f l(0)  = A (5 .12)  
y ~ o O  

and consequently 

0 ~< Ten(T= 0, y) ~< -h~ / ln  A (5.13) 

which means that the ratio A must range between zero and unity in the 
physically acceptable regime. In other words, hole-particle IMEs must be 
lower, on the average, than particle-hole ones, in order for the phonon 
dynamics expressed by the non-Markovian master equation to possess a 
physically meaningful attractor at zero temperature. It is not clear that 
such a restriction should persist for nonvanishing temperatures, since in 
such a case all IMEs contribute to the balance at thermal equilibrium. 

We now turn to the analysis of the functions w(2) and fl(2) 
parametrized by fermionic temperature T and inelasticity spread 7, keeping 
the phonon energy hf2 as an energy unit whose value has been selected 
following previous work (17) as 13 (in arbitrary units). In refs. 17 and 18, the 
damping frequencies 2ki have been computed for the zero-temperature case 
with vanishing IME ratio A. We find that the shape of typical curves 
calculated in those previous works are not sensitively affected by increasing 
temperature and IME ratio. This is illustrated in Fig. la, where we plot 
w(v) as a function of the real variable v = - 2  in the segment 0 ~< v ~< ~ for 
the cases T = A = 0  and 0~<T~<8, A = I  (2~=const).  In Fig. lb we 
amplify the lower part of the plot drawn in Fig. la in order to appreciate 
the change in the slope of the lower curve. The effect of a varying tem- 
perature cannot be observed on the scales employed in these plots; 
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1.0: 1.0 /~=0,T= 0 / 

0.5 0.5 

A=I ~((X.,~,= co,,,,t.) 1 ( X,,~ =Cor, sO 
. .  A ~ O < T ~ 8  ~ Y  0~<T<8 

0.5 1.0 9/~ 0 . . . .  0:5 . . . .  1:0 q/~ 

(a) (b) 
Fig. 1. (a) Plot of w(2) = W + ( 2 ) -  W (,~) as a function of the real variable v = -,~ for the 
two extreme values of the IME ratio A = 0  and A = 1 (see text for explanation). The 
inelasticity spread is h7 = 100, while the phonon energy is hf2 = 13 (arbitrary units). (b) Same 
as (a), on an amplified scale. 

however, one can see from the data that increasing temperature always 
gives rise to increasing frequencies. This is shown in Fig. 2, where two 
curves corresponding to different temperatures have been qualitatively 
depicted. 

From Fig. 1 one learns that the low-lying frequency, related to the 
lowest n0nvanishing eigenvalue of the Markovian generator of the 

T, 

T, 
A= 

Fig. 2. The function w(v) (with v = - 2 )  shown qualitatively for two values of fermionic tem- 
perature T1 and T2. The graphical solution of the secular equation (4.9) shows that increasing 
temperature gives rise to increasing decay frequencies. 
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motion,  ~17) significantly decreases as the s trength pa rame te r  A grows. This 
decrease amoun t s  to a lmost  one order  of magni tude  f rom A = 0 to A = 1. 
Such behavior  reflects the fact that  increasing A ratios cause the 
downward-  and upward-go ing  transi t ion rates W+(,~) to resemble each 
other, with the consequence that  diffusive processes acquire a significant 
role in the dynamics,  thus enlarging the characterist ic decay time 
z =  I)omi, I t 

The  si tuat ion is sensitively different when we consider the function 
fl(2). Indeed, while fl(2) vanishes for T =  A = 0, (17'18) it increases with A, as 
indicated in Fig. 3 for A = 1 (2~  = const)  and various temperatures .  We 
can observe that  for any temperature ,  fl(v) is a decreasing function of 
v = - 2  in the range 0 ~< v ~< y. This is related to the behavior  of the effective 
tempera ture ,  which is an increasing function of both  T and 7, as shown in 
Fig. 4. In fact, we can see f rom Eqs. (5.2), (4.7}, and (5.4) that  for real i 
equal to - v ,  

Therefore  

fl(v, 7)=/~(0,  7-v)=exp[-h#/T~(T,  7 - v ) ]  (5.14) 

lira/~(v, 7) =/~(0, 0) -- e -~a , r  (5.15) 
v ~ y  

1.0 

0.5- 

0 0.5 1.0 
Fig. 3. Plot of fl(2)= W (2)/W+(2) as a function of the real variable v= -2  for A = I  
(2,~,= const) and various temperatures, The inelasticity spread is hy = 100 and the phonon 
energy is hg2 = 13 (arbitrary units). 
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Teff 

600- 

400 

20C 

25 

' ' = ,% 10 T 
(a) 

35 

" [ e f t  

70~ 

, , , , , , , . . . .  1 ,  

0 5 10 T 
(b) 

Fig. 4. The effective temperature T~(T, 7) as a function of fermionic temperature T for given 
correlation width 7; two different drawings are displayed so as to illustrate the changing scale. 

which is the right extreme ordinate of each curve in Fig. 3. On the other 
hand, 

lim/?(v, 7) =/~(0, 7) = exp[ -hY2/Te~(T, 7)] 
v ~ 0  

(5.16) 

is the left ordinate, from which we can read the effective temperature 
corresponding to the equilibrium situation for given T and 7. 

The function Te,(T, 7) is plotted in Fig. 4 as a function of temperature 
for a given correlation width 7; two different drawings are displayed so as 
to illustrate the changing scale. It is clear that the two temperatures should 
approach each other as the energy spread parameter 7 diminishes to zero, 
in order to permit the equilibrium distribution to reach the canonical limit 
with the Boltzmann factor (5.15), which is known to be the correct result 
for perfectly elastic collisions. One realizes that the effective temperature 
Tofr is always higher than the real one T, with increasing slope OTefr/~?T as 
the inelasticity strength increases. 

6 .  S U M M A R Y  

In this work we have studied the phonon dynamics of a harmonic 
oscillator coupled to a steady reservoir. We have found that, in the 
Markovian limit, the oscillator reaches equilibrium through a particular 
loss-of-memory process: the system progressively forgets the information 
contained in the highest moments of the initial distribution. This trend is 
sustained until first the initial dispersion and finally the mean phonon 
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number  are forgotten when equilibrium is reached. We have analyzed a 
particular model including a fermion heat bath, which gives rise to a 
non-Gibbsian behavior of the equilibrium distribution, i.e., the oscillator is 
thermalized at an effective temperature which is generally different from the 
fermionic temperature. This effective temperature is strongly dependent on 
the form and strength of the interaction between fermions and phonons; in 
particular, one can show that some special choices of the interaction matrix 
elements lead to the nonexistence of a stationary solution. However, the 
effective temperature is generally a well-behaved, positive, increasing 
function of both parameters of energy spread, namely the fermion tem- 
perature T and the inelasticity width 7. The minimum of this function 
occurs for T = 0  and is generally positive for nonvanishing inelasticity 
widths. A missing zero effective temperature provides a possible way out of 
the delicate problem (18) posed by the existence of complex frequencies that 
could give rise to oscillating probabilities around zero or unity (zero-tem- 
perature canonical distribution). Therefore, we must consider the analysis 
of the non-Markovian frequencies made in Section 5 as the starting point 
for a more complete description that will be presented in a future work. (32) 
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